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ABSTRACT. A framework-the “agreement concept”-is developed to study the use of Cohen’s kappa as 
well as alternative measures of chance-corrected agreement in a unified manner. Focusing on intrarater consis- 
tency it is demonstrated that for 2 X 2 tables an adequate choice between different measures of chance- 
corrected agreement can be made only if the characteristics of the observational setting are taken into account. 
In particular, a naive use of Cohen’s kappa may lead to strinkingly overoptimistic estimates of chance- 
corrected agreement. Such bias can be overcome by more elaborate study designs that allow for an unrestricted 
estimation of the probabilities at issue. When Cohen’s kappa is appropriately applied as a measure of chance- 
corrected agreement, its values prove to be a linear-and not a parabolic-function of true prevalence. It is 
further shown how the validity of ratings is influenced by lack of consistency. Depending on the design of 
a validity study, this may lead, on purely formal grounds, to prevalence-dependent estimates of sensitivity 
and specificity. Proposed formulas for “chance-corrected” validity indexes fail to adjust for this phenomenon. 
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INTRODUCTION 

Cohen’s kappa [l] is a measure of reliability that has been used abun- 
dantly in a variety of different settings [2]. Because it is defined pre- 
dominantly by a formal calculus, it remains difficult to judge 
whether this index conveys any meaningful information on what it 
is supposed to measure [3,4]. Literature on obviously contraintuitive 
results is immense [5-91. This pertains to the dependence of kappa 
on prevalence as well as to the paradoxical behavior when calcula- 
tion recurs on asymmetric tables. The difficulties in solving the ob- 
served paradoxes and the lack of a pragmatic concept of reliability 
behind kappa becomes even more striking when the wide range of 
possible definitions is taken into account that, like Cohen’s kappa, 
quantify reliability in terms of “agreement beyond chance” [4, 
10,111. 

The mathematical background for the assessment of errors in 
qualitative classifications is usually taken from the theory of quanti- 
tative measurements [4]. Despite its fruitfulness in detail, it has 
stressed more the analogies than the differences between qualitative 
and quantitative measurements. A new melody has come into this 
theoretical framework by latent class analysis, which not only adds 
an arsenal of sophisticated statistical methodology but, more impor- 
tantly, encourages new views through old perspectives [l l-141. 

In the following, a concept is developed in which the properties 
of different formulations for indexes of chance-corrected agreement 
can be studied in a unified way. The notion of chance-corrected 
agreement is shown to correspond to the assumption that inconsis- 
tencies in ratings are due to the fact that raters sometimes are indeci- 
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sive on how to classify items. This interpretation of inconsistency 
has occasionally occurred in the literature: in a paper on errors in 
diagnosing dental caries, Lu [15] suggested a way to distinguish be- 
tween judgments based on clear criteria and judgments that are pure 
guesswork because the application of criteria fails. Lu assumed that 
guessing is characterized by classifying teeth as carious with a proba- 
bility of l/2. It was noted by Maxwell [16] that Cohen’s kappa im- 
plies the probability of positive guesses to be equal to the overall 
probability of positive ratings. Aickin [l l] used a differentiation of 
items into those that are easy and those that are difficult to classify 
when he derived a special kappa-like measure of agreement. None 
of these authors has further pursued the more general implications 
of indecisiveness in the case of unclear items. From the view- 
point of latent class theory the distinction between clearcut and 
uncertain classifications of items is just one of many possible latent 
class models. Interestingly, this concept has been studied casually 
when dealing with the assessment of the validity of multiple ratings 
[17]. Although its characteristics have never been investigated in 
the context of reliability it can be shown to have a special bearing 
because it fosters a deeper understanding of the meaning of chance 
in kappa-like indexes of chance-corrected agreement. This is made 
explicit by focusing on the reliability of replicated dichotomous rat- 
ings. 

EXAMPLE 1 

Suppose a clinician performs 2 independent examinations of 100 
ultrasound scans to assess the consistency of ratings in terms of the 
absence or presence of a specific lesion. The results are as shown in 
Table 1. The proportion of observed agreement is I’, = (13 + 75)/ 
100 = 0.88. To judge this against the amount of agreement that 
would have occurred by chance, Table 1 is contrasted with a table 
of random agreement (Table 2). Customarily, this table is assumed 
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TABLE 1 Agreement between two interpretations of the TABLE 3. Chance agreement when the proportion of posi- 
same 100 ultrasound scans by one clinician tive ratings is 113 

Second rating 

+ 

First rating 
I - + 13 5 75 7 80 20 

1 18 ~ 82 1 100 

to have the same marginal counts (Table 2a) as the observed agree- 
ment table. The proportion of random agreement in this table is 
I’, = (3.6 + 65.6)/100 = 0.69. 

The amount of chance-corrected agreement, then, is calculated 
as Cohen’s kappa: 

KG,hen = (PO - pe)/(l - PC). (1) 

When applied to the example, ?&hen = (0.88 - 0.69)/( 1 - 0.69) = 
0.61. The expected proportion of randomly consistent ratings within 
Table 1 is (P, - &hen) = 0.88 - 0.61 = 0.27. Obviously, only a 
part of Table 2a is used to explain random agreement within Table 
1. This part is given by (1 - Kc,,hen), as may be seen from the follow- 
ing reformulation of Cohen’s formula: 

PO - ‘kohen = (1 - Kcohrn) * PC. (2) 

Thus, we must multiply the table of random agreement (Table 2a) 
by (1 - Ko,he,,) = 1 - 0.61 = 0.39 when we want to know the 
expected numbers of randomly consistent and inconsistent ratings 
(Table 2b) within the observed agreement table. 

Even if one accepts that randomly combined ratings constitute a 
part of the cross-classification, one may question the proportion of 
positive ratings occurring by chance. One could argue that the a 
priori probability of positive ratings would have been l/3. The table 
of randomly combined ratings, then, is as in Table 3a. The propor- 
tion P, of chance agreement is (l/9) + (4/9) = 0.56. Using Cohen’s 
formula for this P,, we get (0.88 - 0.56)/( 1 - 0.56) = 0.73 as the 
amount of chance-corrected agreement in the observed table. Using 
the same argument as above, Table 3a must be multiplied by 1 - 
0.73 = 0.27 to arrive at the cross-classification of random ratings 
expected to be contained in the observed cross-classification (Ta- 
ble 1). 

Table 3b as well as Table 2b support the notion that discordant 

TABLE 2. Chance agreement when the proportion of posi- 
tive ratings is the same as in Table 1 

a b. Multiulied by 0.39 + - + 1.4 6.4 

- 5.6 25.6 - 100 a 39 

a b. Multiplied by 0.27 

+ - + - 

I :-:loo : m27 
ratings in Table 1 are due to random disagreement. Comparing the 
two resulting estimates of chance-corrected agreement, 0.61 and 
0.73, the latter has the disadvantage of being based on a rather arbi- 
trary a priori assumption. But is the assumption underlying the “cor- 
rect” kappa value less arbitrary? 

THE AGREEMENT CONCEPT 

In the following, we use probabilities instead of counts or propor- 
tions to simplify formulas and facilitate argumentation. As in the 
example above, the focus will be on replicated classifications. In this 
case the marginals of the agreement table can be assumed to be 
balanced. The probabilistic notation of the resulting cross-classifi- 
cation of repeated ratings is given in Table 4. 

P, = A + D is the probability of observed agreement. As assumed 
in Cohen’s original formula, the probability of random agreement 
is defined by P, = Q* + (1 - Q)2. This refers to the marginal proba- 
bility Q of the agreement table and characterizes random agreement 
as produced by ratings that (1) are positive with probability Q and. 
(2) combine randomly when repeated on the same subject. While 
condition (2) directly corresponds to the concept of random agree- 
ment, the plausibility of condition (1) is less obvious. The question 
is if the choice of Q is a necessary ingredient of the procedure. 

When we assume that K is nonnegative, a reformulation of for- 
mula (1) 

P, = K(1 -P,) + P, = K+ (1 - K)P, (3) 

shows that Cohen’s concept of chance-corrected agreement can be 
interpreted as the partition of observed agreement P, into random 
agreement P, and systematic agreement where the probability of sys- 
tematic agreement is K It would be contradictory to assume that the 
systematic agreement of the rater on an item was a random effect. 

Therefore, formula (3) suggests that observations can be separated 

TABLE 4. Agreement table 

Test 2 

+ - 

+ 

I - 

A B Q 
Test 1 

C D 1-Q 

Q 1-Q 1 
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TABLE 5. Decomposition of Table 1 according to two latent 
classes: “Systematic agreement” and “random agreement” 

Systematic agreement Random agreement 

I I I I I I 

into a part V on which the rater systematically agrees and a part I 
of some sort of inconclusive observations on which the rater agrees 
only randomly. The former can be further divided according to 
whether the rating is systematically positive (V,,) or systematically 
negative (V,,,). The results of ratings on items of part I are either 
randomly positive or negative, and the probability of positive ratings 
on these items can be quantified by p. This concept of chance- 
corrected agreement will be referred to here as the “agreement con- 
cept.” 

FORMAL APPROACH 
TO THE DEFINITION OF DIFFERENT 
INDEXES OF CHANCE-CORRECTED AGREEMENT 

According to the agreement concept underlying formula (3), the 
resulting agreement table (Table 4) can be split into two tables (Ta- 
ble 5): in the first table each pair of ratings yields the same result 
that is positive with probability pl. The second table is an indepen- 
dent cross-classification of ratings that are positive with proba- 
bility w. 

Suppose we knew that the probabilities P(V) and I’&‘,,) of sys- 
tematic and systematically positive ratings equal 0.7 and 0.2, respec- 
tively, and we were free to choose the assignment probability p of 
inconclusive observations. For example, let p equal the proportion 
of systematically positive ratings within all systematic ratings: p = 
0.2/0.7, or throw a coin so that p = l/2, or use a die and rate positive 
if six dots come up. For each of these strategies, Table 5 and the 
correspondence between the P(V), P(V,,), I, and K, v, w can be 
used to arrive at a specific agreement table (Table 6). The differ- 
ences between these tables are not too striking, yet visible. For all 
these tables, Cohen’s kappa has been calculated. Only for the table 
belonging to assignment probability p = 0.2/0.7 does Cohen’s kappa 
give an unbiased estimate of the probability P(V) of systematic 
agreement. Note that in this case p equals the marginal probability 
Q of the agreement table. For the other tables Cohen’s kappa either 

TABLE 6. Intraobserver agreement for different probabilities 
of randomly positive rating when the proportion of systematic 
ratings is 70% and the proportion of systematically positive 
ratings is 20% 

p = 0.210.7 p= 112 p= 116 

+&hen = 0.70 &hen = 0.67 f‘?ohen = 0.78 

underestimates or overestimates the true probability P(V) of 
chance-corrected agreement. 

Indeed, it depends crucially on the assumptions made on p 
whether Cohen’s kappa or any other kappa-like measure yields an 
unbiased estimate of P(V). To calculate rfrom the observed Table 
4, we have the two observed agreement cells with probabilities A 
and D that, according to Table 5, can be decomposed into 

A = XV + (1 - K)W’ (4) 

D = K(1 - v) + (1 - ~)(l - w)~. (5) 

Because the other two cells of Table 4 are directly related to A and 
D by the equation B = C = (1 - A - D)/2, we have only two 
equations to solve for three unknown probabilities K, v, and w. 
Therefore, a solution of K will be found only if any assumptions are 
made on v or w. Indeed, if the association in Table 4 is positive, 
there is a clear relationship between a specific K and the imposed 
restrictions on v or w. On the basis of this relationship, an infinite 
number of kappa-like indexes could be constructed. Three well- 
known examples are 

K&hen = 

Po - IQ’ + (1 - Q)*l if w = v 
1 - [Q’ + (1 - QI2l 

=P, l-1 
( 1 

if v= 
W2 K A,ckm 

4OR 
(7) 

1 - 2w + 2wr 

K o5 = 2P,, - 1 if w = 0.5. (8) 

Note that for Cohen’s kappa the equality w = v implies that w 
equals the marginal probability Q of Table 4. Aickin [ 1 l] developed 
a version of a kappa-like measure directly on the basis of the decom- 
position in Table 5 by assuming that the odds v/( 1 - v) of systematic 
agreement are the same as the odds w’/( 1 - w)* of random agree- 
ment. Aickin’s maximum likelihood solution of Kcan be written in 
the closed form given for ~~,‘k,“, with odds ratio OR = AD/BC [18]. 
The kappa index ~0s for an assignment probability of l/2 has first 
been proposed by Holley and Guilford [lo]. This formulation of 
kappa has provoked criticism because it “is merely a linear transfor- 
mation of P, and so incorporates no adjustment for change” [19]. 
Yet, within the framework of the agreement concept it is evidently 
just one example of a specified assignment probability that is inde- 
pendent of the probability of systematically positive ratings. The 
marginal probability Q of the resulting agreement table thus can 
differ from 0.5. As exemplified in Table 6, any other fixed assign- 
ment probability w different from l/2 may be used as well. 

EXAMPLE 2 

It was demonstrated above that a chosen index of chance-corrected 
agreement is unbiased if the probability of assigning inconclusive 
observations corresponds to the restrictions imposed by this index. 
The need for such restrictions is specific for 2 X 2 tables only. How- 
ever, the probabilities can be estimated when, for example, more 
than two rating categories are chosen or more than two repetitions 
of each rating are performed. Then the probabilities involved in the 
agreement concept can be estimated by techniques of latent class 
analysis. 

A set of 70 specimens of transsectal ultrasound-guided prostate 
biopsies was examined by a pathologist three times in random order 
to assess the presence of cancer. The pathologist rated the specimens 
during the hours of routine work and no more than one specimen 
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TABLE 7. Numbers of positive findings in three repeated as- 
sessments of 70 Drostate biobsies 

Number i 
of positive 

findings n 

19 
2 
9 

30 

Total: 70 

was assessed per day. The results are displayed in Table 7. The ver- 
sion of Cohen’s kappa for multiple ratings [3] yields a value of 0.79 
for Table 7. 

Again, using probabilities instead of counts the decomposition in 
a table of systematic ratings and a table of random ratings is given 
by the formula 

Y, = K-w, + (1 - K-) 
3! 

i!(3 - i)! 
w’( 1 - ,)(3-t, 

where Y, is the probability of i positive findings in three replicated 
observations, w is the assignment probability of unclear items, and 
vi = vz = 0 so that wj and v0 = 1 - v3 are the probabilities of 
systematically positive and negative ratings. Because Yo = 1 - 
Yr - Yz - Yi, there are three unknown probabilities, K, v = wr, and 
w, to be estimated from three equations. The solutions could be 
computed directly. A maximum likelihood estimation of the model 
parameters was performed with the aid of the GLIM-macro of Ek- 
holm et al. [20] to enable a comparison between the estimates of 
this full model and models with restrictions similar to those consid- 
ered in the case of 2 X 2 tables: 

Variable 

Restricted Restricted Restricted 

model model model 

Full model (Cohen) ( Aickin) (112) 

K 0.65 (0.20) 0.790 (0.06) 0.791 (0.07) 0.792 (0.07) 

u 0.64 (0.21) 0.45 (0.05) d 0.49 = (0.09) 

1 - 2w + 2wl 

w 0.18 (0.12) = v 0.48 (0.04) = l/2 

Dewance (df) 0.0 (0 df ) 4.06 (1 df) 11.63 (1 df) 16.68 (1 df) 

For the full model, the probability Kof chance-corrected agreement In Fig. 1, the straight line G represents the unbiased estimates 
is estimated as 0.65. The estimates of w and v differ by 46% although that are given by ~~~~~~ when the underlying assignment probability 
their standard errors are large. When it is assumed that the probabil- p equals P(V&,)/P(V”). The same straight line results for any other 
ity of systematically positive ratings equals that of randomly positive kappa index provided that the assignment probability generating the 
ratings (Cohen model), the estimate of K becomes considerably prevalence-dependent agreement table corresponds to that kappa 
larger than in the full model. Note that the estimate of ~given by index. In particular, it represents the curve of KO.,, or, 5, and ~0 9 when 
this restricted model equals the multirater version of Cohen’s kappa. the respective assignment probabilities p are 0.1, 0.5, and 0.9. The 
Yet, Cohen’s model exhibits a significant lack of fit to the data other curves show the values of Cohen’s kappa that would result if 
(x2 = 4.06 with 1 df). Thus, this is an example in which the assump- the data were generated by just these three fixed assignment proba- 
tion underlying Cohen’s kappa is clearly violated. Estimates of bilities. If the assignment probability p is l/2, Cohen’s kappa under- 
chance-corrected agreement are almost identical to that of Cohen’s estimates the true probability P(V’). With more extreme assign- 
model when the restriction of Aickin’s index or the restriction v = ment probabilities Cohen’s kappa increasingly overestimates the 

l/2 is applied. Yet the fit of these models is even worse than the fit amount of agreement beyond chance. 

of Cohen’s model. If in this setting the ratings had been repeated 
only twice it would have been overlooked that each of the common 
indexes overestimates the amount of chance-corrected agreement. 

DEPENDENCE OF CHANCE-CORRECTED 
AGREEMENT ON PREVALENCE 

The necessity of choosing the correct index of chance-corrected 
agreement in the case of 2 X 2 tables may become even clearer 
when the dependence of kappa-like indexes on prevalence is inves- 
tigated. Let us consider two distinct populations 0, and 0, charac- 
terized by the respective absence and presence of a feature that the 
rating tries to grasp. Again, each of these populations may be parti- 
tioned into groups Vk,, V&, I0 and Vk,, V&, I’ of subjects that are 
systematically or randomly classified by the rater. The probability 
of systematically positive and negative ratings will be different in 
00 and 01, and this may also be the case for inconclusive items. 
Usually, the items will be sampled from a mixture of these two popu- 
lations. Thus, when in the sample the true prevalence of the feature 
under study is 0, and the parts of systematic and random ratings are 
denoted by V&, V&, I”, the probability of systematically positive 
ratings is P(V&) = @(Vi,,) + (1 - @P(V$,). This applies simi- 
larly for random ratings P(I’) = @‘(I’) + (1 - @P(IO) and for the 
whole set of systematic ratings P(V’) = BP&“) + (1 - @)P(VO). 
That is, P(V’) is a linear function of prevalence. Therefore, if a 
specified Icis an unbiased estimate of P(V’), K-itself must be linear in 
0. This proposed linear dependence of Ken prevalence is in striking 
contradiction to the parabolic shape of the curve that is usually dis- 
played as having a maximum at a medium prevalence and ap- 
proaching minimal values or even zero when prevalence is near 0 
or 1. In the framework of the agreement concept, such a nonlinear 
dependence on prevalence is explicable only by a conflict between 
an underlying assignment probability p and the ~formula chosen 
to estimate P(V’). 

Because, in reality, nothing is known about the true state of the 
items, the assignment of inconclusive items I0 can at the most be 
guided by the probability P(V&) of systematically positive ratings. 
For example, associated with Cohen’s concept of “chance” is the 
idea that p exactly equals the proportion of systematically positive 
ratings: p = P(V,&)/P(V’). Similarly, the assignment probability 
corresponding to ~~~~~~~ is a function of P(V&)/P(Vs). In contrast, 
the probability corresponding to ~0s is clearly independent of the 
relative amount of systematically positive ratings. Thus, although 
the assignment of inconclusive items is not directly influenced by 
the prevalence of the true state, it is related to this prevalence 
through its dependence on P(V:O,) and P(V”). What happens if a 
chosen measure K of chance-corrected agreement does not corre- 
spond to the underlying probability of assigning inconclusive items? 
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FIGURE 1. Cohen’s kappa as a function of the true preva- 
lence and the probability p of randomly positive rating. 

P(V) = 0.8, P(V) = 0.5, zJ(V,,) = 0.08, P(v&) = 0.35 

G, unbiased estimates of kappa indexes that correctly corre- 
spond to P (Ko.,, PO.,), (Km Pas), (‘k, Po.s), (“&hen, &hen); 

Fl, estimates of K&hen if p = 0.1; F5, estimates of K&hen if p = 
0.5; F9, estimates of Kc&,, if p = 0.9. 

To produce a parabolic curve for the dependence of Cohen’s 
kappa on prevalence it must be assumed that the assignment proba- 
bilities for items in I0 and I’ are different. This may happen if there 
are two types of inconclusive features that are associated with the 
true state and evoke different strategies of assignment. Then, Co- 
hen’s kappa will overestimate the true amount of systematic agree- 
ment over the whole spectrum of prevalences (Fig. 2). 

Even for an inappropriately chosen index of chance-corrected 
agreement there is no formal necessity for small values in popula- 
tions with extreme prevalence. This supports the observation of 
Shrout et al. [21] that large values of Cohen’s kappa can be found 
even in populations with very small trait prevalence. 
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FIGURE 2. Cohen’s kappa as a function of the true preva- 
lence and the probability p of randomly positive rating. 

P( vo) = 0.5, P(V) = 0.2, P( v&J = 0.05, P( VP.) = 0.13 

G, unbiased estimates; Fx, K&hen if p = 0.1 for items in P and 
p = 0.9 for items in P. 

THE AGREEMENT CONCEPT 
AND THE CLASSIC CONCEPT OF RELIABILITY 

The special features of the agreement concept become clear when 
compared with classic measurement theory. Here, in the most ab- 
stract formulation, the reliability of repeated measurements on a set 
of items is defined as the variance of the average measurements per 
item divided by the variance of all measurements. The classic in- 
traclass correlation coefficient ICC is a measure of reliability. For 
normally distributed measurements, it allows an interpretation of a 
single measurement Y, of rater i on subject j as arising by an errone- 
ous deviation E, from an ideal measurement X, provided that errors 
are independent of X, and normally distributed with mean 0. Within 
this framework, reliability depends on the variability of the ideal 
measurements X, and the amount of measurement error. 

By interpreting dichotomous ratings as quantitative measure- 
ments with values 0 and 1, the ideal measurement X, is viewed as 
a consensus score s, that arises as the mean of repeated binary ratings 
per subject or, equivalently, as the probability of a positive rating 
when ratings are repeated on subject i. The intraclass correlation 
coefficient, then, can be written as 

(10) 

where Q is, as before, the marginal probability of positive findings 
in the cross-classification of repeated ratings [8]. This formulation 
of the intraclass correlation coefficient for two replicate ratings is 
equivalent to Cohen’s kappa [3]. T o avoid ambiguity the abbrevia- 
tion ICC is used for Cohen’s kappa as a measure of classic reliability. 

In the agreement concept, measurement error is assumed to occur 
due to inconclusive observations. The relation between the in- 
traclass correlation coefficient ICC and the probability P (I ) of these 
inconclusive observations is given by 

Icc = Q(l - Q) - N)P(~ - P) = 1 _ p(I) ~(1 - P) 

Q(1 - Q) Q(l - Q) (“) 

where p is the probability of rating an inconclusive item as positive. 
It has been shown above that Cohen’s kappa is an unbiased estimate 
of chance-corrected agreement only if p = Q. Formula (1 l), then, 
reduces to ICC = 1 - I’( I) = P(V). Thus, only in this case is classic 
reliability, as measured by the intraclass correlation coefficient, 
identical to the measure of chance-corrected agreement. 

Moreover, formula (11) shows that Cohen’s kappa as a measure 
of classic reliability is a mixture of two components: the amount of 
certainty encountered in the rating process and the probability of 
assigning an unclear item to one of the two rating categories. A 
consequence is that reliability can be increased in two ways, either 
by clarifying the inconclusiveness of items or by changing the assign- 
ment probability. Figure 3 shows that any degree of reliability in the 
classic sense can be achieved by choosing an extreme assignment 
probability while the amount of inconclusive observations remains 
unchanged. When judging the quality of improvements in (classic) 
reliability it may be of practical importance to differentiate between 
improvements in the amount of systematic ratings and mere changes 
in the guessing strategy. 

ON THE VALIDITY OF UNRELIABLE RATINGS 

It is common knowledge that the validity of diagnostic classifica- 
tions is prone to be impaired by a lack of reliability. Yet, when valid- 
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assignment probability p 

FIGURE 3. Dependence of Cohen’s kappa as an intraclass 
correlation coefficient (ICC) on the probability of random as- 
signment when P(v) = 0.25 and Z’( VP) = 0.2. 

ity indexes such as sensitivity or specificity are estimated on the basis 
of a clinical investigation, the problem of reliability is rarely at issue. 
The preponderance of validity is substained by the impression that 
lack of reliability is responsible only for a relatively small part of 
overall misclassification. Indeed, this impression may be biased. In 
any case, it is not supported by the probabilistic models on which 
the assessment of validity and reliability commonly is based. 

Let us assume that the pathological feature that an observer aims 
to classify as present or absent is clearly and uniquely defined. If 
the ratings were absolutely reliable, then meticulously planned and 
performed validity studies in populations with different true preva- 
lence all would yield the same sensitivity SE* and the same specific- 
ity SP* of the rating. What is the impact of chance agreement on 
these validity estimates? When chance agreement is measured by a 
kappa-like index, then it may be assumed that the corresponding 
probabilistic conceptualization applies. 

According to the agreement concept the error-inflated sensitivity 
and specificity can be expressed in terms of systematic and random 
rating: 

SE = P(V;,) + P(I’)p (12) 

SP = P(V&,) + P(IO)(l - p). (13) 

Within the agreement concept, the natural definition of chance- 
corrected validity consists of the probability of correct ratings that 
are not due to random assignment: 

SE* = P(V;,,) = SE - P(I’)p 

sp* = P(Vo,,,) = SP - P(IO)(l - p). 

Because the probabilities P(I’) = 1 - P(V’) and P(I”) = 1 - P(VO) 
can only be estimated by some kappa-like index in a concomitant 
study of intraobserver agreement, a validity study without such addi- 
tional assessment of reliability will not arrive at any meaningful 
measure of chance-corrected validity. 

Whereas for absolutely reliable ratings indexes of validity ideally 
are independent of prevalence, such independence is questionable 
when the inconsistency of ratings is taken into consideration. As 
has been shown above, Cohen’s kappa as well as Aickin’s measure 
of chance-corrected agreement are based on the assumption that 
the assignment probability p of inconclusive items depends on the 
prevalence of the feature under study. Because P is involved in for- 
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mulas (12) and (13) as a characteristic of validity, it has a formal 
impact on observed sensitivity and specificity. For example, when 
in a given setting, Cohen’s kappa is an unbiased measure of chance- 
corrected agreement, then the corresponding assignment probability 
p&hen will have the effect that sensitivity monotonously increases 
(Fig. 4a) and specificity monotonously decreases (Fig. 4b) with in- 
creasing prevalence. The same is true when PA,& applies in a given 
setting. Note that the decision rule underlying Cohen’s kappa yields 
the highest maxima for specificity and sensitivity but also the lowest 
minima. The range of sensitivities is 40 to 70%, of specificities 78 
to 90%, depending on prevalence. The validity of unreliable ratings 
is independent of prevalence if and only if the assignment probabil- 
ity p of inconclusive items is independent of prevalence, for example 
p = l/2 (Fig. 4a and b). 

DISCUSSION 

When the question is whether an index of chance-corrected agree- 
ment sensibly gauges the consistency of ratings, it is not the formula 
of the index that yields the answer, but the concept underlying the 
formula. Only the concept can be explored with respect to its plausi- 
bility in practice. An important feature of the concept underlying 

071 I 
0 0.1 0.2 03 0.4 0.6 0.6 0.7 0.6 0.9 1 

pfRVthlCe 

B 

FIGURE 4. Sensitivity (a) and specificity (b) as functions of 
the true prevalence and the probability p of randomly positive 
rating. 

Z’(V) = 0.8, P(P) = 0.5, P(V&) = 0.08, P(Vp,) = 0.35 

sl, p = &h&hen; S2, p = p&,&,; S3, p = 0.5. 
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kappa-like indexes is the unspoken assumption that the act of cate- 
gorizing, characterizing, or classifying is contaminated by an uncon- 
scious inclination to adhere to a classification even if an assignment 
to given categories is difficult. This assumption seems to be more 
difficult to accept in psychological [22] than in medical decision 
making (e.g., see Refs. 23 and 24), where the inclination toward 
guessing may be alleviated but not ruled out completely by the intro- 
duction of an additional category “intermediate, indeterminate, in- 
definite” [25,26]. 

In weighing the actual characteristics of a rating process, the di- 
chotomy of systematic and random ratings proposed by the agree- 
ment concept must be compared with alternative concepts. One of 
these is characterized by the assumption that there are no unclear 
items but only erroneous deviations “from a ‘true’ assessment which 
[the rater] would make were he able to give limitless time and con- 
centration to the task” [13]. Like the agreement concept, it is han- 
dled analytically as a latent class model. The latent classes are the 
“true” assignments, and the deviations from these assignments are 
estimated as error probabilities. Moreover, like the agreement con- 
cept, it allows for a more detailed analysis of reliability than the 
summary measure of reliability that is derived from classic measure- 
ment theory. It is up to philosophical or psychological debate on 
medical decision making as to which of the different concepts of a 
rating process is more realistic in a given context. 

Cohen’s kappa is used extensively for all kinds of qualitative data: 
ratings of pathologists or radiologists, clinicians’ classifications of pa- 
tient characteristics, answers to self-administered questionnaires, 
etc. Provided that the use of an index of chance-corrected agree- 
ment is conceptually justified, it should be accompanied by some 
thought on whether or not the assignment probability of random 
ratings is influenced by the proportion of systematically positive rat- 
ings. For example, it makes sense to take such influence into consid- 
eration if a rating process such as the interpretation of an electrocar- 
diogram is part of the clinical routine. On the other hand, a 
correlation between positive ratings and assignment probability 
would be quite implausible if the reliability of a self-administered 
questionnaire is to be assessed. Because the respondents are barely 
able to have any impression on the proportion of positive answers 
in the rest of the sample, they are supposed to use a fixed assignment 
probability. If this assignment probability is correlated with the true 
responder status, Cohen’s kappa will generally overestimate the 
chance-corrected agreement of responses (Fig. 2). In settings in 
which observers experimentally classify a sample of entities with 
predefined but unknown trait prevalence, the assignment probabil- 
ity of inconsistent items will usually be fixed, although the prior 
experience of the observer may influence the overall strategy of as- 
signment. Quality assurance activities of pathologists or radiologists 
are examples of such settings. It should be kept in mind also that 
in experimental settings the estimate of chance-corrected agreement 
may be seriously biased if the type of assignment of inconclusive 
items does not correspond with the chosen kappa coefficient. Figure 
1 and Example 2 demonstrate this phenomenon. 

The risk of bias also pertains when a study aims at assessing the 
dependence of reliability on characteristics of the observed items 
[27]. Not only the choice of an adequate measure of chance- 
corrected agreement, but also the dependence of this measure on 
prevalence, are critical for the assessment of factor effects because 
a factor may “cause” differences in agreement just by the fact that 
different factor levels are associated with different trait prevalences. 

The agreement concept has further implications on the interpre- 
tation of validity indexes emerging from more or less convenient 

samples. As was demonstrated above, a lack of reliability may on 
purely formal grounds lead to prevalence-dependent estimates of 
sensitivity and specificity. Several diagnostic procedures have been 
shown to vary in validity when applied to populations of different 
disease prevalences. This phenomenon has been ascribed to differ- 
ences in disease characteristics and to a specific selection of cases 
in populations with differing prevalences. Furthermore, verification 
bias has been proposed as a cause of the observed varying validity 
[28-301. Prevalence-dependent assignment probabilities of incon- 
sistent observations may add to these effects of biased design. An 
example is provided by the investigations on exercise testing as a 
diagnostic marker for coronary artery disease [31]. Hlatky et al. [32] 
showed in a multifactorial analysis that the validity of the procedure 
was influenced by age, sex, type of chest pain, etc. Yet the target 
disease is known to be far more probable in older than in younger, 
and in male than in female, patients. Therefore, in an unblinded 
study, the increased sensitivity and decreased specificity in men and 
in older people are explainable not only by verification bias, but by 
an increased positive rating in basically inconclusive observations 
as well. A further finding of this analysis was that sensitivity ap- 
peared to be influenced by more factors than specificity. In terms of 
the agreement concept this phenomenon may simply be due to the 
fact that systematic ratings were less prevalent in patients with the 
disease than without the disease. As Fig. 4a and b show, this would 
result in a decreased prevalence-dependent variability of specificity 
and, thus, in a lower power when assessing factor effects on speci- 
ficity. 

The role of prevalence-dependent random rating can further be 
elucidated by comparing the validity estimates of blinded and un- 
blinded studies [33]. Weintraub et al. [34] found that in a blinded 
study, a history of typical angina had no effect on validity while in 
an unblinded study, sensitivity was increased and specificity de- 
creased when compared with ratings in patients with atypical chest 
pain. This conforms to the former consideration that assignment 
probabilities of inconclusive items can be taken as fixed and unal- 
tered by prevalence in blinded studies, but should be suspected to 
be dependent on prevalence in unblinded studies with convenient 
clinical samples. 

Work on “chance-corrected” validity indexes [27,35] seems to 
point to some solution of this problem. Yet the proposed formulas 
lack a conceptual background of what should be considered as 
“chance.” It is the sparseness of information contained in a 2 X 2 
table that prevents the modeling of reliability and validity in terms 
of random and systematic error. When a discrimination of the vari- 
ous sources of error is impossible, it is tempting to blend reliability 
and validity together. However, the interpretation of corresponding 
indexes is at best difficult. A more differentiated look at random 
and systematic error in qualitative data will enhance not only the 
planning but also the evaluation of diagnostic marker studies. 

So far, the agreement concept has been discussed solely in the 
realm of intraobserver agreement. Most of the paradoxes in the ap- 
plication of Cohen’s kappa, however, have arisen when assessing 
interrater consistency. Although the formula of Cohen’s kappa is 
easily adapted to an asymmetric 2 X 2 agreement table, it is not a 
trivial exercise in the case of two raters to describe how the formula 
relates to the agreement concept. The concept singles out two fea- 
tures: the assignment probability p of inconclusive items and the set 
of items that is gauged by the probability of systematic agreement 
or “agreement beyond chance.” This notion of systematic agree- 
ment refers, first of all, to a feature of intraobserver reliability: it 
describes the proportion of items that can clearly be categorized by 
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one observer. Thus, two observers can differ in several aspects: in 
the items they experience as easy to classify, and in the assignment 
probabilities they use in the case of uncertainty. Inconsistent ratings 
may not only be due to the fact that an item is inconclusive for 
both observers; inconsistencies may arise as well when only one of 
the observers is uncertain, or when both observers are certain but 
assign the item to different categories. To deal with these different 
types of systematic and random consistencies and inconsistencies, 
more information is needed than a 2 X 2 agreement table can pro- 
vide. Kappa-like indexes that are based on these tables are prone 
to fail in assessing interobserver agreement correctly. Therefore, the 
necessity of more elaborate designs of interobserver studies must be 
acknowledged not only when other latent class approaches [13] but 
also when the agreement concept is used as a basis of argumentation. 

This work was supported in part by BMFT Grant 07 PHF 01. 
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